

Design & Analysis of Lightweight Disk Brake

Mehul Rawal*, Manish Daiya

Mechanical Department, KJIT, Vadodara, Gujarat, India

ABSTRACT

We cover the designing of the disk brake construction. The purpose of brake disk dimensioning and design is to confirm that a bike can be stopped safely under any possible driving conditions. Braking system design also needs to confirm that neither the disk itself nor any other component in its direct district is unprotected to excessive thermal loads. In this we have done two types of analysis i.e. thermal & structural.

Keywords: Disk Brake, Thermal Analysis, Structural Analysis, Composite material, lightweight

I. INTRODUCTION

At the IAA in Frankfurt in 1999, the carbon-ceramic brake disk had its world premiere. The use of the advanced material had transformed the brake technology. Now evaluation to the conventional gray cast iron brake disk to the carbon-ceramic brake disk evaluated round 50 per cent less reducing the unsprung mass by almost 20 kilograms. Further important advantages are, better brake response and vanishing data, high thermal stableness, excellent pedal feel, better-quality steering behaviour, high abrasion resistance and thus longer life time and the advantage of escaping almost completely brake dust. At first Porsche AG built the carbon-ceramic brake disk in 2001 into the 911 GT2 as series equipment. Meanwhile that time also further premium brands use the advantages of this advanced brake technology for more security and comfort. These are for example sports cars and luxury class limousines from Audi, Bentley, Bugatti and Lamborghini.

- The worldwide automobile brake system market is flooded with advanced, modern and cost effective brake system technologies.
- Canada (21.73%), Mexico (19.22%), Japan (16.33%), China (13.56%) and Brazil (6.54%) are the largest manufacturing countries of automobile brake systems in the world.
- The braking system establishes an essential part of an automobile. Failure of the automobile brake system at the time of emergency can lead to accidents, property damage or even death of an individual.

- In recent years, braking systems have undergone marvellous changes in terms of performance, technology, design and safety.
- Today, the brake system market is shelled with so many new and innovative technologies such as electronic brakes, anti-lock brakes, cooling brakes, disc brakes, drum brakes, hand brakes, power brakes, servo brakes and brake by wire.
- Utmost of the modern cars/bikes have disc brakes on the front wheels, and some have disc brakes on all four wheels in four wheeler and in rear wheel of bikes.
- This is the part of the brake system that does the actual work of stopping the cars and bikes.
- The disc brake is a device for slowing or stopping the rotation of a wheel. Repetitive braking of the vehicle leads to heat generation during each braking event.

II. METHODS AND MATERIAL

Creo is a family or suite of design software supporting product design for discrete manufacturers and is developed by PTC. The suite consists of apps, each delivering a distinct set of capabilities for a user role within product development.

In order to research relationship between stiffness, mass and design variables, common batch file is built by CREO.

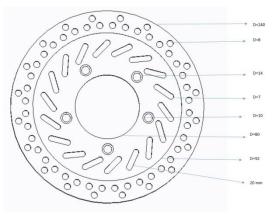


Figure 1: 2D Drawing of Disc

Figure 2: Disc Modeling in Creo

A different feature of carbon-ceramic brake disks is the ceramic composite material they are made from. Both the carbon-ceramic brake disk body and the friction layers applied to each side consist of carbon fiberreinforced silicon carbide. The main matrix mechanisms are silicon carbide (SiC) and elemental silicon (Si). The reinforcement of the material is provided by carbon fibers (C). Silicon carbide, the main matrix component governs great hardness for the composite material. The carbon fibers make for high mechanical strength and provide the fracture toughness needed in technical applications. The resulting quasiductile properties of the ceramic composite material ensure its resistance to high thermal and mechanical load. Particular the low weight, the hardness, the steady characteristics also in case of high pressure and temperature, the resistance to thermal shock and the quasiductility provide long live time of the brake disk and avoid all problems resulting of loading, which are typical for the classic grey cast iron brake disks.

After studying research papers we selected one research paper "Design and Analysis of Disc Brake" & we use few data that are given below:

Disc Dimension	:	240mm		
Maximum Temperature	:		350 °C	
Maximum Pressure	:	1Mpa		
Normal force		:	500 N	
Heat flux	:	33.58	5 kw/m2	
Thermal Gradient : He	eat Flux	/	Thermal	
Conductivity				
	= 33.58	= 33.582*103/40		
	= 839.0	= 839.63 k/m		
Velocity	= 27.77 m/s			
Mass	= 132 kg			

Material Selected are

- Aluminum Alloy
- Cast Iron
- Gray Cast Iron
- Carbon Ceramic

In research paper we selected disc brake two wheelers model using in Ansys, done the Thermal and Structural Analysis to calculate the deflection, total heat flux, Frequency and temperature of disc brake model.

III. RESULTS AND DISCUSSION

A. Analysis details Thermal Analysis

Initial Condition

Table.1: Initial Condition for thermal analysis			
Object Name Initial Temperatu			
State	Fully Defined		
Definition			
Initial Temperature	Uniform Temperature		
Initial Temperature Value	350. °C		

Aluminium Alloy

Table 2: Aluminium Alloy Properties

Density	2.77e-006 kg mm^- 3
Coefficient of Thermal	2.3e-005 C^-1
Expansion	
Specific Heat	8.75e+005 mJ kg^-
Specific fleat	1 C^-1
Compressive Yield	280
Strength MPa	

Tensile Yield Strength	280
MPa	
Tensile Ultimate Strength	310
MPa	
Young's Modulus MPa	71000
Poisson's Ratio	0.33
Bulk Modulus MPa	69608
Shear Modulus MPa	26692

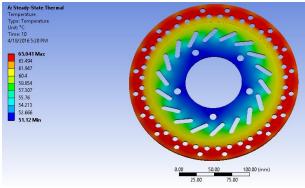


Figure 3: Temperature

Gray Cast Iron

Gray cast iron, is a type of cast iron that has a graphitic microstructure. It is named after the gray color of the fracture it forms, which is due to the presence of graphite.

 Table 2: Gray Cast Iron Properties

Density	7.2e-006 kg mm^-3
Coefficient of Thermal	1.1e-005 C^-1
Expansion	
Specific Heat	4.47e+005 mJ kg^-1
Speenie neat	C^-1
Thermal Conductivity	5.2e-002 W mm^-1
	C^-1
Resistivity	9.6e-005 ohm mm
Compressive Ultimate	820
Strength MPa	
Tensile Ultimate Strength	240
MPa	
Young's Modulus MPa	1.1e+005
Poisson's Ratio	0.28
Bulk Modulus MPa	83333
Shear Modulus MPa	42969

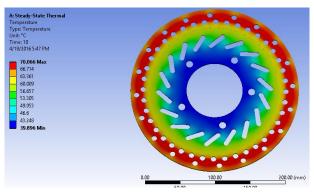


Figure 4: Temperature

Cast Iron

Table.5. Cast from Froperties			
Density	5.536e-006 kg mm^-3		
Thermal Conductivity	1.13e-002 W mm^- 1 C^-1		
Tensile Ultimate	90.321		
Strength MPa			
Tensile Yield Strength	65.5		
MPa			
Compressive Yield	330.95		
Strength MPa			
Young's Modulus MPa	62100		
Poisson's Ratio	0.24		
Bulk Modulus MPa	39808		
Shear Modulus MPa	25040		

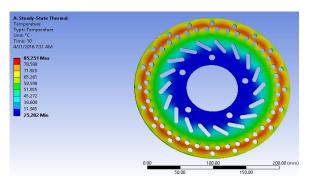


Figure 5: Temperature

Carbon Ceramic

Table 4: Carbon Ceramic Properties

Density	2.e-006 kg mm^-3
Specific Heat	800 mJ kg^-1 C^-
	1
Thermal Conductivity	4.e-002 W mm^-1
	C^-1
Tensile Ultimate Strength	20

MPa	
Coefficient of Thermal	
Expansion	2.6 C^-1
Tensile Yield Strength	310
MPa	
Compressive Yield	500
Strength MPa	
Young's Modulus MPa	95000
Poisson's Ratio	0.1
Bulk Modulus MPa	39583
Shear Modulus MPa	43182

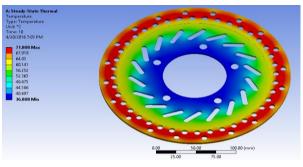


Figure 6: Temperature

B. Analysis details Static Structural Analysis

In this analysis the general information is given below & the analysis is done according to provided data. Force : 500N

Temperature	: 40 °C
Rotational velocity	: 22.77 m/s @ 1000 rpm
Analysis Settings Step i	is Specify "Step Controls"

Aluminum Alloy

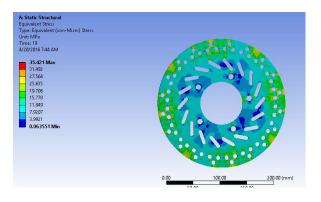


Figure 7: Equivalent stress **Gray Cast Iron**

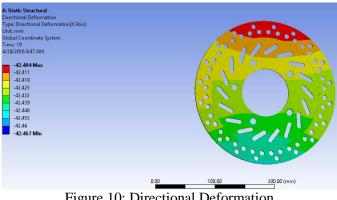
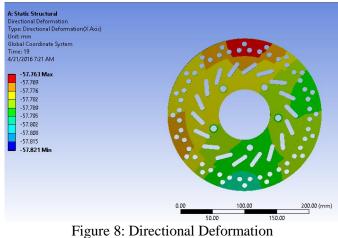



Figure 10: Directional Deformation

Cast Iron

Carbon ceremic

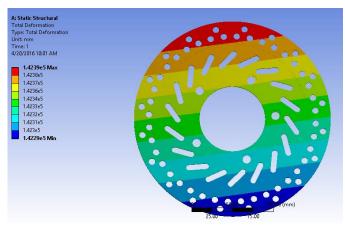


Figure 9: Total Deformation

IV. CONCLUSION

As per our design and comparison we observe that \checkmark Carbon ceramic disc brake is lighter than gray cast iron disc brake.

- ✓ We have decrease approximate 75% weight by using carbon ceramic and its heat generation in disc plate.
- ✓ The noise & vibration in braking will be small as parallel to other convention brake material like cast iron, steel etc.
- ✓ We observe that heat flux is more in cast iron during analysis and weight is also more.
- ✓ Carbon Ceramic Brakes have many benefits over outdated cast iron brakes.
- ✓ From 50% or more in unsprang-weight reduction to faster stopping distances.
- ✓ Carbon ceramic brakes can last about four times longer than cast iron rotors.

V. Comparing Result

Materials	Properties		
	Volume	Mass	
Aluminum Alloy	1.1512e+005 mm ³	0.31889 kg	
Gray Cast Iron	1.1512e+005 mm ³	0.82889 kg	
Cast Iron	1.1512e+005 mm ³	0.63732 kg	
Carbon Ceremic	1.1512e+005 mm ³	0.23025 kg	

Table 5 : Mass & Volume

Table 6: Static Structural Analysis

Materials	Temperature		Thermal Error	
	Minimum	Maximum	Minimum	Maximu
Aluminum Alloy	51.12 °C	65.041 °C	1.1001e-006	m 11.832
Gray Cast Iron	39.896 °C	70.066 °C	1.0024e-006	28.845
Cast Iron	25.282 °C	85.251 °C	2.8596e-007	150.37
Carbon Ceremic	36.808 °C	71.808 °C	8.7754e-007	38.281
Ceremit				

Table. 7: Steady State thermal Results

Materials	Minimum	Maximum	Time(s) 10,11,13	
Aluminum Alloy	7.9026, 7.9066, 7.905	15		
Gray Cast Iron	6.9341, 6.9425, 6.9427	15	10,11,15	
Cast Iron	1.8862, 1.8842	15	10,13	
Carbon Ceramic	0.29645 - 0.29789	15	10 - 12	

Table 8. Safety factor

Materials	Total Deformation		Directional Deformation		Equivalent Elastic Strain		Equivalent Stress	
Aluminum	Minimum	Maximum	Minimum	Maximum	Minimum	Maximum	Minimum	Maximu m
Alloy	1.9045e+005 mm	1.9044e+005 mm	-25.35 mm	-25.241 mm	4.2858e-006 mm/mm	5.0342e-004 mm/mm	6.3551e-002 MPa	35.421 MPa
Gray Cast Iron	1.2292e+005 mm	1.2292e+005 mm	-42.467 mm	-42.404 mm	2.6619e-006 mm/mm	3.1725e-004 mm/mm	0.14271 MPa	34.569 MPa
Cast Iron	2.1774e+005 mm	2.1774e+005 mm	-57.821 mm	-57.763 mm	5.128e-006 mm/mm	5.6513e-004 mm/mm	0.16207 MPa	34.764 MPa
Carbon Ceramic	1.423e+005 mm	1.4257e+005 mm	-5629.7 mm	5602.4 mm	2.7619e-006 mm/mm	1.1762e-002 mm/mm	0.10261 MPa	1040.7 MPa

VI. Future Scope/Benefits

- ✓ Carbon ceramic offers important benefits in terms of performance in both wet and dry conditions weight, comfort, corrosion resistance, durability and advanced appeal.
- ✓ Carbon ceramic brakes produce fewer noise during braking.
- ✓ Currently it is used in Sports car & many commercial vehicle.
- ✓ Carbon ceramic which use disc brake works more professionally, which can help to decrease the accident that may happen in each day.

VII. REFERENCES

- [1]. Darle W.Dudley, 1954, Hand book of practical gear design Alec strokes, 1970, High performance of gear design.
- [2]. Maitra, G.M, 2004, Hand Book of Gear Design, TataMcGrawHill, New Delhi.sign
- [3]. Chogdu Cho and Sooick Ahn, "Thermo-Elastic Analysis for Chattering Phenomenon of Automotive Disk Brake", 'KSME International Journal', 2001, Vol-15, pp 569-579.
- [4]. Guru Murthy Nathi, K. Gowtham and Satish Reddy, "Coupled Structual / Thermal Analysis of Disc Brake", IJRET 2012, Vol.1, pp.539-553.
- [5]. V. M. Thilak, R. Krishnara Deepan & R.Palani ,"Transient Thermal and Structural Analysis of the Rotor Disc of Disc Brake ", International Journal of Scientific & Engineering Research Volume 2, Issue 8, August-2011 Issn 2229-551.